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Coboundary Expansion

• The k-dimensional Cheeger constant

• Homology of random complexes

• Expansion and topological overlap

• Expansion via symmetry

• 2-expanders from random Latin squares

Spectral Expansion

• Spectral gap of the k-Laplacian

• Spectral gap and colored simplices

• Garland’s method

• Homology of random flag complexes

• Spectral gap and hypergraph matching



Graphical Cheeger Constant

Edge Cuts

For a graph G = (V ,E ) and S ⊂ V , S = V − S let

e(S ,S) = |{e ∈ E : |e ∩ S | = 1}|.

S S

Cheeger Constant

h(G ) = min
0<|S|≤ |V |

2

e(S ,S)

|S |
.



Graphical Spectral Gap

Laplacian Matrix

G = (V ,E ) a graph, |V | = n.

The Laplacian of G is the V × V matrix LG :

LG (u, v) =





deg(u) u = v

−1 uv ∈ E

0 otherwise.

Eigenvalues of LG

0 = λ1(G ) ≤ λ2(G ) ≤ · · · ≤ λn(G ).

λ2(G ) = Spectral Gap of G .



Cheeger Constant vs. Spectral Gap

Theorem [Alon-Milman, Tanner]:

For all ∅ 6= S $ V

e(S ,S) ≥
|S ||S |

n
λ2(G ).

In particular

h(G ) ≥
λ2(G )

2
.

Theorem [Alon, Dodziuk]:

If G is d -regular then

h(G ) ≤
√

2dλ2(G ).

h(G ) and λ2(G ) are therefore essentially equivalent measures of
graphical expansion.



High Dimensional Expansion

The notions of Cheeger Constant and Spectral Gap have natural
high dimensional extensions. They are however not equivalent in
dimensions greater than one.

Coboundary Expansion

• Linial-M-Wallach: Homology
of random complexes.

• Gromov: The topological
overlap property.

• Gundert-Wagner: Expansion
of random complexes.

Spectral Expansion

• Garland: Cohomology of
discrete groups.

• Aharoni-Berger-M:
Hypergraph matching.

• Kahle: Homology of random
flag complexes.



Simplicial Cohomology

X a simplicial complex on V , R a fixed abelian group.
i -face of σ = [v0, · · · , vk ] is σi = [v0, · · · , v̂i , · · · , vk ].
C k(X ) = k-cochains = skew-symmetric maps φ : X (k)→ R .
Coboundary Operator dk : C k(X )→ C k+1(X ) given by

dkφ(σ) =

k+1∑

i=0

(−1)iφ(σi ) .

d−1 : C
−1(X ) = R → C 0(X ) given by

d−1a(v) = a for a ∈ R , v ∈ V .
Z k(X ) = k-cocycles = ker(dk).
Bk(X ) = k-coboundaries = Im(dk−1).
k-th reduced cohomology group of X :

H̃
k
(X ) = H̃

k
(X ;R) = Z k(X )/Bk(X ) .



Cut of a Cochain

Cut determined by a k-cochain φ ∈ C k(X ;R):

supp(dkφ) = {τ ∈ X (k + 1) : dkφ(τ) 6= 0} .

Cut Size of φ: ‖dkφ‖ = |supp(dkφ)|.

Example:

1 1

0

0 0

0

σ1 σ2

‖d1φ‖ = |{σ1, σ2}| = 2



Cosystolic Norm of a Cochain

The Cosystolic Norm of a k-cochain φ ∈ C k(X ;R):

‖[φ]‖ = min { |supp(φ+ dk−1ψ)| : ψ ∈ C k−1(X ;R) }.

Example: ‖φ‖ = 3 but ‖[φ]‖ = 1

1

1 0

0 B

1 0

1 1

0 0

φ φ− d01A,Bd01A,B

0 0 11

A

1 0 0 0



Expansion of a Complex

Expansion of a Cochain

The expansion of φ ∈ C k(X ;R)− Bk(X ;R) is

‖dkφ‖

‖[φ]‖
.

k-expansion Constant

hk(X ;R) = min

{
‖dkφ‖

‖[φ]‖
: φ ∈ C k(X ;R)− Bk(X ;R)

}
.

Remarks:

• G graph ⇒ h0(G ;F2) = h(G ).

• hk(X ;R) > 0 ⇔ H̃k(X ;R) = 0.

• In the sequel: hk(X ) = hk(X ;F2).



Expansion of a Simplex

∆n−1 = the (n − 1)-dimensional simplex on V = [n].

Claim [M-Wallach, Gromov]:

hk−1(∆n−1) ≥
n

k + 1
.

Example:

[n] =
⋃k

i=0 Vi , |Vi | =
n

k+1

φ = 1V0×···×Vk−1

‖[φ]‖ = ( n
k+1 )

k

‖dk−1φ‖ = ( n
k+1 )

k+1



A Model of Random Complexes

Y a simplicial complex , Y (i) = i -dim skeleton of Y .
Y (i) = oriented i -dim simplices of Y .
fi (Y ) = |Y (i)|.
∆n−1 = the (n − 1)-dimensional simplex on V = [n].

Yk(n, p) = probability space of all complexes

∆
(k−1)
n−1 ⊂ Y ⊂ ∆

(k)
n−1

with probability distribution

Pr(Y ) = pfk(Y )(1− p)(
n

k+1)−fk(Y ) .



Homological Connectivity of Random Complexes

Fix k ≥ 1 and a finite abelian group R .

Theorem [Linial-M ’03 , M-Wallach ’06]:

For any function ω(n) that tends to infinity

lim
n→∞

Pr [ Y ∈ Yk(n, p) : H̃k−1(Y ;R) = 0 ] =

{
0 p = k log n−ω(n)

n

1 p = k log n+ω(n)
n

.

The Relevance of Expansion:

If 0 6= [φ] ∈ H̃
k−1

(∆
(k−1)
n−1 ) then

Pr [ [φ] ∈ H̃
k−1

(Y ;F2) ] = (1− p)‖dkφ‖

≤ (1− p)
n‖[φ]‖
k+1 .



Weighted Expansion

X - n-dimensional pure simplicial complex.
A probability distribution on X (k):

w(σ) =
|{η ∈ X (n) : σ ⊂ η}|(

n+1
k+1

)
fn(X )

.

For φ ∈ C k(X ) let

‖φ‖w =
∑

{σ∈X (k):φ(σ)6=0}
w(σ)

‖[φ]‖w = min{‖φ+ dk−1ψ‖w : ψ ∈ C k−1(X )}.

Weighted k-th Expansion:

hk(X ) = min

{
‖dkφ‖w
‖[φ]‖w

: φ ∈ C k(X )− Bk(X )

}
.



The Affine Overlap Property

Number of Intersecting Simplices

For A = {a1, . . . , an} ⊂ Rk and p ∈ Rk let

γA(p) = |{σ ⊂ [n] : |σ| = k + 1 , p ∈ conv{ai}i∈σ}|.

Theorem [Bárány]:

There exists p ∈ Rk such that

fA(p) ≥
1

(k + 1)k

(
n

k + 1

)
− O(nk).



The Topological Overlap Property

Number of Intersecting Images

For a continuous map f : ∆n−1 → Rk and p ∈ Rk let

γf (p) = |{σ ∈ ∆n−1(k) : p ∈ f (σ)}|.

Theorem [Gromov]:

There exists p ∈ Rk such that

γf (p) ≥
2k

(k + 1)!(k + 1)

(
n

k + 1

)
− O(nk).



Topological Overlap and Expansion

Number of Intersecting Images

For a continuous map f : X → Rk and p ∈ Rk let

γf (p) = |{σ ∈ X (k) : p ∈ f (σ)}|.

Expansion Condition on X

Suppose that for all 0 ≤ i ≤ k − 1

hi(X ) ≥ ǫ.

Theorem [Gromov]

There exists a δ = δ(k , ǫ) such that for any continuous map
f : X → Rk there exists a p ∈ Rk such that

γf (p) ≥ δfk(X ).



Example: Symmetric Matroids

Matroid:
An n-dimensional simplicial complex M ⊂ 2V such that
M[S ] is pure for all S ⊂ V .

Example: Linear Matroids

A - finite subset of a vector space.
M = all linearly independent subsets σ ⊂ A.

Homology of matroids:

H̃i (M) = 0 for all 0 ≤ i ≤ dimM − 1.

Symmetric matroid:

G = Aut(M) is transitive on the maximal faces.



Some Symmetric Matroids

The Partition Matroid Xn,m

Let V1, . . . ,Vn+1 be n + 1 disjoint sets, |Vi | = m.

Xn,m = {σ ⊂
n+1⋃

i=1

Vi : ∀i |σ ∩ Vi | ≤ 1}.

Independence Matroid of Affine Space

IN(Fn
q) = {σ ⊂ Fn

q : σ is linearly independent}.

Hermitian Unital with 65 Points
Independence matroid of the curve

H = {[x , y , z ] ∈ PG (2, 16) : x5 + y5 + z5 = 0}.



Expansion of Symmetric Matroids

Proposition [Lubotzky-M-Mozes]:

M symmetric matroid ⇒ hk(M) ≥ 8− dimM ∀ k ≤ dimM − 1.

Example: The Partition Matroid Xn,m

For 0 ≤ k ≤ n− 1

hk(Xn,m) ≥

(
n+1
k+1

)
∑k+1

j=0 (
2(m−1)

m
)j
(

n−j
n−k−1

) .

In particular

hk(Octahedral n − sphere) = hk(Xn,2) ≥ 1

and

hn−1(Xn,m) ≥
n + 1

∑n
j=0(

2(m−1)
m

)j
>

n + 1

2n+1 − 1
.



Example: The Spherical Buildings ∆ = An+1(Fq)

Vertices: All nontrivial linear subspaces 0 6= V $ Fn+2
q .

Simplices: V0 ⊂ · · · ⊂ Vk .

Homology of ∆ [Solomon, Tits]:

H̃i(∆) = 0 for i < n and dim H̃n(∆) = q(
n+2
2 ).

Proposition [Gromov, LMM]:

hn−1(An+1(Fq)) ≥
1

(n + 2)!
.

Problem:
For fixed n ≥ 2 determine

lim
q→∞

hn−1(An+1(Fq)).



Expander Graphs

(d , ǫ)-Expanders

A family of graphs {Gn = (Vn,En)}n with |Vn| → ∞
with two seemingly contradicting properties:

• High Connectivity: h(Gn) ≥ ǫ.

• Sparsity: maxv degGn
(v) ≤ d .

Pinsker:
Random 3 ≤ d -regular graphs are (d , ǫ)-expanders.

Margulis:

Explicit construction of expanders.

Lubotzky-Phillips-Sarnak, Margulis:

Ramanujan Graphs - an ”optimal” family of expanders.



Expander Complexes

Degree of a Simplex

For σ ∈ X (k − 1) let deg(σ) = |{τ ∈ X (k) : σ ⊂ τ}|.
Dk−1(X ) = maxσ∈X (k−1) deg(σ).

(k, d , ǫ)-Expanders

A family of Complexes {Xn}n with f0(Xn)→∞ such that

Dk−1(Xn) ≤ d and hk−1(Xn) ≥ ǫ.

Problems
For fixed fixed k ≥ 2, d , ǫ > 0 construct:

• (k , d , ǫ)-expanders.

• Complexes that are jointly (j , d , ǫ)-expanders for all j ≤ k .



Latin Squares

Definitions
Sn = Symmetric group on [n].
(π1, . . . , πk) ∈ Skn is legal if πi(ℓ) 6= πj(ℓ) for all ℓ and i 6= j .
A Latin Square is a legal n-tuple L = (π1, . . . , πn) ∈ Snn.
Ln = Latin squares of order n with uniform measure.

The Usual Picture
L = (π1, . . . , πn)↔ TL ∈ Mn×n([n])
TL(i , πk(i)) = k for 1 ≤ i , k ≤ n.

Example for n = 4

π = (1234)

L = (Id , π, π2, π3) TL =

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1



The Complete 3-Partite Complex

V1 = {a1, . . . , an} , V2 = {b1, . . . , bn} , V3 = {c1, . . . , cn}

Tn = V1 ∗ V2 ∗ V3 = {σ ⊂ V : |σ ∩ Vi | ≤ 1 for 1 ≤ i ≤ 3}

a1 ai an

b1 bj bn

c1 ck cn

Tn ≃ S2 ∨ · · · ∨ S2 (n − 1)3 times



Latin Square Complexes
L = (π1, . . . , πn) ∈ Ln defines a complex Y (L) ⊂ Tn by

Y (L)(2) =
{
[ai , bj , cπi (j)] : 1 ≤ i , j ≤ n

}
.

Example: n = 2

L =
1 2

2 1
Y (L) =

c2

a1

c1

b2

a2 b1

Y

(
1 2

2 1

)
∪ Y

(
2 1

1 2

)
= T2



Random Latin Squares Complexes

Multiple Latin Squares

For Ld = (L1, . . . , Ld ) ∈ L
d
n let Y (Ld ) = ∪di=1Y (Li ).

The Probability Space Y(n, d)

Ldn = d -tuples of Latin squares of order n with uniform measure.
Y(n, d) = {Y (Ld ) : Ld ∈ Ldn} with induced measure from Ldn .

Theorem [Lubotzky-M]:

There exist ǫ > 0, d <∞ such that

lim
n→∞

Pr [Y ∈ Y(n, d) : h1(Y ) > ǫ] = 1.

Remark: ǫ = 10−11 and d = 1011 will do.



Idea of Proof

Fix 0 < c < 1 and let φ ∈ C 1(Tn;F2).

φ is

{
c − small if ‖[φ]‖ ≤ cn2

c − large if ‖[φ]‖ ≥ cn2

c-Small Cochains
Lower bound on expansion in terms of the spectral gap of the
vertex links.

c-Large Cochains

Expansion is obtained by means of a new large deviations bound
for the probability space Ln of Latin squares.



2-Expansion and Spectral Gap

Notation
For a complex T

(1)
n ⊂ Y ⊂ Tn let:

Yv = lk(Y , v) = the link of v ∈ V .
λv = spectral gap of the n× n bipartite graph Yv .
λ̃ = minv∈V λv .
d = D1(Y ) = maximum edge degree in Y .

Theorem [LM]:

If ‖[φ]‖ ≤ cn2 then

‖d1φ‖ ≥

(
(1− c1/3)λ̃

2
−

d

3

)
‖[φ]‖.



Large Deviations for Latin Squares

The Random Variable fE
E - a family of 2-simplices of Tn, |E| ≥ cn3.
For a Latin square L ∈ Ln let

fE(L) = |Y (L) ∩ E|.

Then

E [fE ] =
|E|

n
≥ cn2.

Theorem [LM]:

For all n ≥ n0(c)

Pr[L ∈ Ln : fE(L) < 10−3c2n2] < e−10−3c2n2 .



Higher Laplacians

A positive weight function c(σ) on the simplices of X induces an
Inner product on C k(X ) = C k(X ;R):

(φ,ψ) =
∑

σ∈X (k)

c(σ)φ(σ)ψ(σ) .

Adjoint d∗
k : C k+1(X )→ C k(X )

(dkφ,ψ) = (φ, d∗
kψ) .

C k−1(X )
dk−1
−−−→
←−−−
d∗
k−1

C k(X )
dk−→
←−
d∗
k

C k+1(X )

The reduced k-Laplacian of X is the positive semidefinite operator

∆k = dk−1d
∗
k−1 + d∗

kdk : C k(X )→ C k(X ) .



Matrix Representation of ∆k

For the constant weight function c ≡ 1, the matrix form of the
Laplacian is

∆k(σ, τ) =

{
deg(σ) + k + 1 σ = τ
(σ : σ ∩ τ) · (τ : σ ∩ τ) |σ ∩ τ | = k , σ ∪ τ 6∈ X

Relation with the Graph Laplacian

Let G = 1-skeleton of X

∆0 = LG + J

µ0(X ) = λ2(G )



Harmonic Cochains

The space of Harmonic k-cochains

ker ∆k = {φ ∈ C k(X ) : dkφ = 0 , d∗
k−1φ = 0}.

Simplicial Hodge Theorem:

C k(X ) = Im dk−1 ⊕ ker ∆k ⊕ Im d∗
k .

ker ∆k
∼= H̃

k
(X ;R).

µk(X ) = minimal eigenvalue of ∆k .

A Vanishing Criterion:

µk(X ) > 0⇔ H̃k(X ;R) = 0.



Spectral Gap and Colorful Simplices

∆
(k−1)
n−1 ⊂ X ⊂ ∆

(k)
n−1 with vertex coloring: [n] = V0 ∪ · · · ∪ Vk .

Number of colorful k-simplices:

e(V0, . . . ,Vk) = |{σ ∈ X (k) : |σ ∩ Vi | = 1 ∀ 0 ≤ i ≤ k}|.

Theorem [Parzanchevski-Rosenthal-Tessler]:

Let c be the constant weight function c(σ) ≡ 1. Then

e(V0, . . . ,Vk) ≥

∏k
i=0 |Vi |

n
· µk−1(X ).



Sketch of Proof

Define ψ ∈ C k(∆n−1) by

ψ([v0, . . . , vk ]) =

{
sgn(π) vπ(i) ∈ Vi ∀ 0 ≤ i ≤ k

0 [v0, . . . , vk ] is not colorful.

Let φ = d∗
k−1ψ ∈ C k−1(∆n−1) = C k−1(X ). Then:

(∆k−1φ, φ) = (dk−1φ, dk−1φ) = n2 · e(V0, . . . ,Vk)

(φ, φ) = n

k∏

i=0

|Vi |.

Therefore, by the variational principle:

µk−1(X ) ≤
(∆k−1φ, φ)

(φ, φ)
=

n · e(V0, . . . ,Vk)∏k
i=0 |Vi |

.



Eigenvalues and Cohomology

Let X be a pure d -dimensional complex with weight function:

c(σ) = (d − dimσ)!|{τ ∈ X (d) : τ ⊃ σ}|.

For τ ∈ X consider the link Xτ = lk(X , τ) with a weight function
given by cτ (α) = c(τα).

Theorem [Garland ’72]:

Let 0 ≤ ℓ < k < d . Then:

min
τ∈X (ℓ)

µk−ℓ−1(Xτ ) >
ℓ+ 1

k + 1
⇒ Hk(X ;R) = 0.

In particular:

min
τ∈X (d−2)

µ0(Xτ ) >
d − 1

d
⇒ Hd−1(X ;R) = 0.



Complexes with Expanding Links

The Projective Plane Graph

Gq = (Vq ,Eq) : points vs. lines graph of PG (2, q).

|Vq| = 2(q2 + q + 1) , |Eq | = (q + 1)(q2 + q + 1).

Spectral Gap: µ0(Gq) = 1−
√
q

q+1 .

If q ≥ d2 then µ0(Gq) >
d−1
d

. This implies the following

Theorem [Garland]:

Let q ≥ d2 and let X be a pure d -dimensional complex such that
lk(X , τ) ∼= Gq for all τ ∈ X (d − 2).
Then Hd−1(X ;R) = 0.



Cohomology of Discrete Subgroups

K a local field with residue field Fq.
Γ a torsion-free discrete cocompact subgroup of SLd+1(K).

Theorem [Garland]:

If q ≥ d2 then H i (Γ;R) = 0 for 0 < i < d .

Sketch of Proof:
B = Ãd(K) - the affine building associated to SLd+1(K).
B is a contractible complex with a free Γ action.
The quotient space BΓ = B/Γ is a pure d -dimensional complex
such that lk(BΓ, τ) ∼= Gq for all τ ∈ BΓ(d − 2).
Therefore for all 0 < i < d

H i (Γ;R) = H i (BΓ;R) = 0.



Flag Complexes

The flag complex X (G ) of a graph G = (V ,E ):
Vertex set: V , Simplices: all cliques σ of G .

G X (G )

Remark:
The first subdivision of a complex is a flag complex.



Face Numbers of Flag Complexes

Octahedral n-Sphere

(S0)∗(k+1) =
{a1, b1} ∗ · · · ∗ {ak+1, bk+1}

a1

a2

b2

b1

a3

b3

Proposition [M ’03]:

If H̃k(X (G )) 6= 0 then for all j :

fj(X (G )) ≥ fj((S
0)∗(k+1)) =

(
k + 1

j + 1

)
2j+1.



Homology of Flag Complexes of Random Graphs

Let ǫ > 0 be fixed and let G ∈ G (n, p).

Theorem [Kahle ’12]:

p ≤ n−
1
k
−ǫ ⇒ Hk(X (G );Z) = 0 a.a.s.

p ≥

(
(k2 + 1 + ǫ) log n

n

) 1
k+1

⇒ Hk(X (G );R) = 0 a.a.s.

Theorem [DeMarco-Hamm-Kahn ’12]:

p ≥

(
(32 + ǫ) log n

n

) 1
2

⇒ H1(X (G );F2) = 0 a.a.s.



Eigenvalues of Flag Complexes

G = (V ,E ) graph, |V | = n, X = X (G ) with weights c(σ) ≡ 1.
µk = µk(X ) = minimal eigenvalue of ∆k on X .

Theorem [Aharoni-Berger-M]:

For k ≥ 1
kµk ≥ (k + 1)µk−1 − n.

In particular:
µk ≥ (k + 1)λ2 − kn.

Corollary:

λ2(G ) >
kn

k + 1
⇒ µk > 0 ⇒ H̃

k
(X (G )) = 0.



Example: Turán Graph

|V1| = · · · = |Vk | = ℓ, n = kℓ, m = (ℓ− 1)k .
Tk(n) - the complete k-partite graph on V1 ∪ · · · ∪ Vk .

Spectral gap

λ2(Tk(n)) =
(k − 1)n

k
.

Flag complex

X (Tk(n)) = V1 ∗ · · · ∗ Vk ≃
m∨

i=1

Sk−1.

dim H̃k−1(X (Tk(n));R) = m 6= 0.



Eigenvalues and Connectivity of I(G )

The independence complex I(G )

Vertex set: V , Simplices: all independent sets σ of G .

Homological connectivity

η(Y ) = 1 + min{i : H̃i (Y ) 6= 0}.

Theorem [ABM]:

For a graph G on n vertices

η(I(G )) ≥
n

λn(G )
.



Bipartite Matching

A1, . . . ,Am finite sets.
A System of Distinct Representatives (SDR):
a choice of distinct x1 ∈ A1, . . . , xm ∈ Am.

A1 A2 A3

1 1
2

3 3 3
∃ SDR

A1 A2 A3

1 1
2 2
6 ∃ SDR

Hall’s Theorem (1935)

(A1, . . . ,Am) has an SDR iff
| ∪i∈I Ai | ≥ |I| for all I ⊂ [m] = {1, . . . ,m}.



Hypergraph Matching

A Hypergraph is a family of sets F ⊂ 2V

(F1, . . . ,Fm) a sequence of m hypergraphs
A System of Disjoint Representatives (SDR) for (F1, . . . ,Fm)
is a choice of pairwise disjoint F1 ∈ F1, . . . ,Fm ∈ Fm

When do (F1, . . . ,Fm) have an SDR?

The problem is NP-Complete even if all Fi ’s consist of 2-element
sets. Therefore, we cannot expect a ”good” characterization as in
Hall’s Theorem.

There are however some interesting sufficient conditions ...



Do (F1,F2,F3,F4) have an SDR?

∃ SDR 6 ∃ SDR



The Aharoni-Haxell Theorem

A Matching is a hypergraphM of pairwise disjoint sets.
The Matching Number ν(F) of a hypergraph F is the maximal
size |M| of a matchingM⊂ F .

ν(F) = 3 ν(F) = 1

The Aharoni-Haxell Theorem
F1, . . . ,Fm ⊂

(
V
r

)
such that for all I ⊂ [m]

ν(
⋃

i∈I
Fi) > r(|I| − 1) .

Then (F1, . . . ,Fm) has an SDR.



A Fractional Extension

A Fractional Matching of a hypergraph F on V is a function
f : F → R+ such that

∑
F∋v f (F ) ≤ 1 for all v ∈ V .

The Fractional Matching Number ν∗(F) is
maxf

∑
F∈F f (F ) over all fractional matchings f .

Example: The Finite Projective Plane Pn

ν(Pn) = 1 , ν∗(Pn) =
n2+n+1
n+1

Theorem [Aharoni-Berger-M]:

F1, . . . ,Fm ⊂
(
V
r

)
such that for all I ⊂ [m]

ν∗(
⋃

i∈I
Fi ) > r(|I| − 1) .

Then (F1, . . . ,Fm) has an SDR.


