High Dimensional Expansion

Roy Meshulam
Technion – Israel Institute of Technology

Hausdorff Research Institute for Mathematics Bonn, April 2017

Plan

Coboundary Expansion

- The *k*-dimensional Cheeger constant
- Homology of random complexes
- Expansion and topological overlap
- Expansion via symmetry
- 2-expanders from random Latin squares

Spectral Expansion

- Spectral gap of the k-Laplacian
- Spectral gap and colored simplices
- Garland's method
- Homology of random flag complexes
- Spectral gap and hypergraph matching

Graphical Cheeger Constant

Edge Cuts

For a graph G=(V,E) and $S\subset V$, $\overline{S}=V-S$ let $e(S,\overline{S})=|\{e\in E:|e\cap S|=1\}|.$

Cheeger Constant

$$h(G) = \min_{0 < |S| < \frac{|V|}{|S|}} \frac{e(S, \overline{S})}{|S|}.$$

Graphical Spectral Gap

Laplacian Matrix

$$G = (V, E)$$
 a graph, $|V| = n$.

The Laplacian of G is the $V \times V$ matrix L_G :

$$L_G(u, v) = \left\{ egin{array}{ll} \deg(u) & u = v \\ -1 & uv \in E \\ 0 & \mathrm{otherwise.} \end{array}
ight.$$

Eigenvalues of L_G

$$0 = \lambda_1(G) \le \lambda_2(G) \le \cdots \le \lambda_n(G).$$
 $\lambda_2(G) =$ Spectral Gap of G .

Cheeger Constant vs. Spectral Gap

Theorem [Alon-Milman, Tanner]:

For all $\emptyset \neq S \subsetneq V$

$$e(S,\overline{S}) \geq \frac{|S||\overline{S}|}{n} \lambda_2(G).$$

In particular

$$h(G) \geq \frac{\lambda_2(G)}{2}$$
.

Theorem [Alon, Dodziuk]:

If G is d-regular then

$$h(G) \leq \sqrt{2d\lambda_2(G)}$$
.

h(G) and $\lambda_2(G)$ are therefore essentially equivalent measures of graphical expansion.

High Dimensional Expansion

The notions of Cheeger Constant and Spectral Gap have natural high dimensional extensions. They are however not equivalent in dimensions greater than one.

Coboundary Expansion

- Linial-M-Wallach: Homology of random complexes.
- Gromov: The topological overlap property.
- Gundert-Wagner: Expansion of random complexes.

Spectral Expansion

- Garland: Cohomology of discrete groups.
- Aharoni-Berger-M: Hypergraph matching.
- Kahle: Homology of random flag complexes.

Simplicial Cohomology

X a simplicial complex on V, R a fixed abelian group. i-face of $\sigma = [v_0, \cdots, v_k]$ is $\sigma_i = [v_0, \cdots, \widehat{v_i}, \cdots, v_k]$. $C^k(X) = k$ -cochains = skew-symmetric maps $\phi : X(k) \to R$. Coboundary Operator $d_k : C^k(X) \to C^{k+1}(X)$ given by

$$d_k\phi(\sigma)=\sum_{i=0}^{k+1}(-1)^i\phi(\sigma_i).$$

 $d_{-1}: C^{-1}(X) = R \rightarrow C^0(X)$ given by $d_{-1}a(v) = a$ for $a \in R$, $v \in V$. $Z^k(X) = k$ -cocycles $= \ker(d_k)$. $B^k(X) = k$ -coboundaries $= \operatorname{Im}(d_{k-1})$. k-th reduced cohomology group of X:

$$\tilde{H}^k(X) = \tilde{H}^k(X; R) = Z^k(X)/B^k(X) .$$

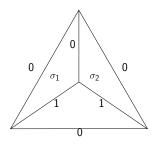
Cut of a Cochain

Cut determined by a k-cochain $\phi \in C^k(X; R)$:

$$\operatorname{supp}(d_k\phi)=\{\tau\in X(k+1)\ :\ d_k\phi(\tau)\neq 0\}\ .$$

Cut Size of ϕ : $||d_k\phi|| = |\text{supp}(d_k\phi)|$.

Example:



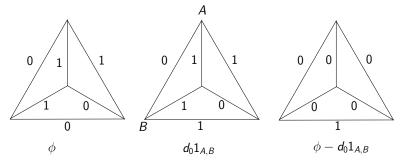
$$||d_1\phi|| = |\{\sigma_1, \sigma_2\}| = 2$$

Cosystolic Norm of a Cochain

The Cosystolic Norm of a k-cochain $\phi \in C^k(X; R)$:

$$\|[\phi]\| = \min \{ |\operatorname{supp}(\phi + d_{k-1}\psi)| : \psi \in C^{k-1}(X; R) \}.$$

Example: $\|\phi\|=3$ but $\|[\phi]\|=1$



Expansion of a Complex

Expansion of a Cochain

The expansion of $\phi \in C^k(X;R) - B^k(X;R)$ is

$$\frac{\|d_k\phi\|}{\|[\phi]\|}.$$

k-expansion Constant

$$h_k(X;R) = \min \left\{ \frac{\|d_k \phi\|}{\|[\phi]\|} : \phi \in C^k(X;R) - B^k(X;R) \right\}.$$

Remarks:

- G graph $\Rightarrow h_0(G; \mathbb{F}_2) = h(G)$.
- $h_k(X;R) > 0 \Leftrightarrow \tilde{H}^k(X;R) = 0.$
- In the sequel: $h_k(X) = h_k(X; \mathbb{F}_2)$.

Expansion of a Simplex

 $\Delta_{n-1} = \text{the } (n-1)\text{-dimensional simplex on } V = [n].$

Claim [M-Wallach, Gromov]:

$$h_{k-1}(\Delta_{n-1})\geq \frac{n}{k+1}.$$

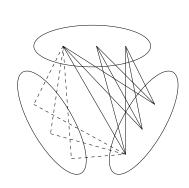
Example:

$$[n] = \bigcup_{i=0}^{k} V_i \ , \ |V_i| = \frac{n}{k+1}$$

$$\phi = 1_{V_0 \times \cdots \times V_{k-1}}$$

$$\|[\phi]\| = (\frac{n}{k+1})^k$$

$$||d_{k-1}\phi|| = (\frac{n}{k+1})^{k+1}$$



A Model of Random Complexes

Y a simplicial complex , $Y^{(i)} = i$ -dim skeleton of Y. Y(i) = oriented i-dim simplices of Y. $f_i(Y) = |Y(i)|$. $\Delta_{n-1} = \text{the } (n-1)$ -dimensional simplex on V = [n].

 $Y_k(n,p)$ = probability space of all complexes

$$\Delta_{n-1}^{(k-1)} \subset Y \subset \Delta_{n-1}^{(k)}$$

with probability distribution

$$\Pr(Y) = p^{f_k(Y)} (1-p)^{\binom{n}{k+1}-f_k(Y)}$$
.

Homological Connectivity of Random Complexes

Fix $k \ge 1$ and a finite abelian group R.

Theorem [Linial-M '03, M-Wallach '06]:

For any function $\omega(n)$ that tends to infinity

$$\lim_{n\to\infty} \Pr\left[Y \in Y_k(n,p) : \tilde{\mathsf{H}}_{k-1}(Y;R) = 0\right] = \begin{cases} 0 & p = \frac{k\log n - \omega(n)}{n} \\ 1 & p = \frac{k\log n + \omega(n)}{n} \end{cases}.$$

The Relevance of Expansion:

If
$$0 \neq [\phi] \in \tilde{\mathsf{H}}^{k-1}(\Delta_{n-1}^{(k-1)})$$
 then

$$\begin{array}{l} \Pr \ [\ [\phi] \in \tilde{\operatorname{H}}^{k-1}(Y; \mathbb{F}_2) \] = (1-p)^{\|d_k \phi\|} \\ \leq (1-p)^{\frac{n\|[\phi]\|}{k+1}}. \end{array}$$

Weighted Expansion

X - n-dimensional pure simplicial complex.

A probability distribution on X(k):

$$w(\sigma) = \frac{|\{\eta \in X(n) : \sigma \subset \eta\}|}{\binom{n+1}{k+1} f_n(X)}.$$

For $\phi \in C^k(X)$ let

$$\begin{aligned} \|\phi\|_{w} &= \sum_{\{\sigma \in X(k): \phi(\sigma) \neq 0\}} w(\sigma) \\ \|[\phi]\|_{w} &= \min\{\|\phi + d_{k-1}\psi\|_{w} : \psi \in C^{k-1}(X)\}. \end{aligned}$$

Weighted *k*-th Expansion:

$$\underline{h}_k(X) = \min \left\{ \frac{\|d_k \phi\|_w}{\|[\phi]\|_w} : \phi \in C^k(X) - B^k(X) \right\}.$$

The Affine Overlap Property

Number of Intersecting Simplices

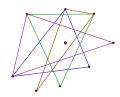
For $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^k$ and $p \in \mathbb{R}^k$ let

$$\gamma_A(p) = |\{\sigma \subset [n] : |\sigma| = k+1 \ , \ p \in \mathsf{conv}\{a_i\}_{i \in \sigma}\}|.$$

Theorem [Bárány]:

There exists $p \in \mathbb{R}^k$ such that

$$f_A(p) \geq \frac{1}{(k+1)^k} \binom{n}{k+1} - O(n^k).$$



The Topological Overlap Property

Number of Intersecting Images

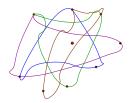
For a continuous map $f:\Delta_{n-1} \to \mathbb{R}^k$ and $p \in \mathbb{R}^k$ let

$$\gamma_f(p) = |\{\sigma \in \Delta_{n-1}(k) : p \in f(\sigma)\}|.$$

Theorem [Gromov]:

There exists $p \in \mathbb{R}^k$ such that

$$\gamma_f(p) \geq rac{2k}{(k+1)!(k+1)} inom{n}{k+1} - O(n^k).$$



Topological Overlap and Expansion

Number of Intersecting Images

For a continuous map $f: X \to \mathbb{R}^k$ and $p \in \mathbb{R}^k$ let

$$\gamma_f(p) = |\{\sigma \in X(k) : p \in f(\sigma)\}|.$$

Expansion Condition on X

Suppose that for all $0 \le i \le k-1$

$$\underline{h}_i(X) \geq \epsilon$$
.

Theorem [Gromov]

There exists a $\delta = \delta(k, \epsilon)$ such that for any continuous map $f: X \to \mathbb{R}^k$ there exists a $p \in \mathbb{R}^k$ such that

$$\gamma_f(p) \geq \delta f_k(X)$$
.

Example: Symmetric Matroids

Matroid:

An *n*-dimensional simplicial complex $M \subset 2^V$ such that M[S] is pure for all $S \subset V$.

Example: Linear Matroids

 ${\it A}$ - finite subset of a vector space.

 $M = \text{all linearly independent subsets } \sigma \subset A.$

Homology of matroids:

$$\tilde{H}_i(M) = 0$$
 for all $0 \le i \le \dim M - 1$.

Symmetric matroid:

G = Aut(M) is transitive on the maximal faces.

Some Symmetric Matroids

The Partition Matroid $X_{n,m}$

Let V_1, \ldots, V_{n+1} be n+1 disjoint sets, $|V_i| = m$.

$$X_{n,m} = \{ \sigma \subset \bigcup_{i=1}^{n+1} V_i : \forall i \mid \sigma \cap V_i \mid \leq 1 \}.$$

Independence Matroid of Affine Space

$$\mathsf{IN}(\mathbb{F}_q^n) = \{ \sigma \subset \mathbb{F}_q^n : \sigma \text{ is linearly independent} \}.$$

Hermitian Unital with 65 Points

Independence matroid of the curve

$$H = \{ [x, y, z] \in PG(2, 16) : x^5 + y^5 + z^5 = 0 \}.$$

Expansion of Symmetric Matroids

Proposition [Lubotzky-M-Mozes]:

M symmetric matroid $\Rightarrow \underline{h}_k(M) \geq 8^{-\dim M} \quad \forall k \leq \dim M - 1.$

Example: The Partition Matroid $X_{n,m}$

For $0 \le k \le n-1$

$$\underline{h}_k(X_{n,m}) \geq \frac{\binom{n+1}{k+1}}{\sum_{j=0}^{k+1} (\frac{2(m-1)}{m})^j \binom{n-j}{n-k-1}}.$$

In particular

$$\underline{h}_k(\text{Octahedral } n - \text{sphere}) = \underline{h}_k(X_{n,2}) \ge 1$$

and

$$\underline{h}_{n-1}(X_{n,m}) \ge \frac{n+1}{\sum_{i=0}^{n} (\frac{2(m-1)}{m})^{i}} > \frac{n+1}{2^{n+1}-1}.$$

Example: The Spherical Buildings $\Delta = A_{n+1}(\mathbb{F}_q)$

Vertices: All nontrivial linear subspaces $0 \neq V \subsetneq \mathbb{F}_q^{n+2}$. Simplices: $V_0 \subset \cdots \subset V_k$.

Homology of Δ [Solomon, Tits]:

$$ilde{\mathsf{H}}_i(\Delta) = 0$$
 for $i < n$ and $\dim ilde{\mathsf{H}}_n(\Delta) = q^{\binom{n+2}{2}}$.

Proposition [Gromov, LMM]:

$$\underline{h}_{n-1}(A_{n+1}(\mathbb{F}_q)) \geq \frac{1}{(n+2)!}.$$

Problem:

For fixed $n \ge 2$ determine

$$\lim_{n\to\infty}\underline{h}_{n-1}(A_{n+1}(\mathbb{F}_q)).$$

Expander Graphs

(d, ϵ) -Expanders

A family of graphs $\{G_n = (V_n, E_n)\}_n$ with $|V_n| \to \infty$ with two seemingly contradicting properties:

- High Connectivity: $h(G_n) \ge \epsilon$.
- Sparsity: $\max_{v} \deg_{G_n}(v) \leq d$.

Pinsker:

Random $3 \le d$ -regular graphs are (d, ϵ) -expanders.

Margulis:

Explicit construction of expanders.

Lubotzky-Phillips-Sarnak, Margulis:

Ramanujan Graphs - an "optimal" family of expanders.

Expander Complexes

Degree of a Simplex

For
$$\sigma \in X(k-1)$$
 let $\deg(\sigma) = |\{\tau \in X(k) : \sigma \subset \tau\}|$.
 $D_{k-1}(X) = \max_{\sigma \in X(k-1)} \deg(\sigma)$.

(k, d, ϵ) -Expanders

A family of Complexes $\{X_n\}_n$ with $f_0(X_n) \to \infty$ such that

$$D_{k-1}(X_n) \le d$$
 and $h_{k-1}(X_n) \ge \epsilon$.

Problems

For fixed fixed $k \ge 2, d, \epsilon > 0$ construct:

- (k, d, ϵ) -expanders.
- Complexes that are jointly (j, d, ϵ) -expanders for all $j \leq k$.

Latin Squares

Definitions

 $\mathbb{S}_n = \text{Symmetric group on } [n].$ $(\pi_1, \dots, \pi_k) \in \mathbb{S}_n^k$ is legal if $\pi_i(\ell) \neq \pi_j(\ell)$ for all ℓ and $i \neq j$. A Latin Square is a legal n-tuple $L = (\pi_1, \dots, \pi_n) \in \mathbb{S}_n^n$. $\mathcal{L}_n = \text{Latin squares of order } n \text{ with uniform measure.}$

The Usual Picture

$$L = (\pi_1, \dots, \pi_n) \leftrightarrow T_L \in M_{n \times n}([n])$$

$$T_L(i, \pi_k(i)) = k \text{ for } 1 \le i, k \le n.$$

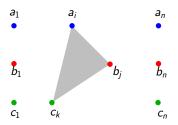
Example for n = 4

$$\pi = (1234)$$
 $L = (Id, \pi, \pi^2, \pi^3)$
 $T_L = T_L = T_L$

1	2	3	4
4	1	2	3
3	4	1	2
2	3	4	1

The Complete 3-Partite Complex

$$V_1 = \{a_1, \dots, a_n\} , V_2 = \{b_1, \dots, b_n\} , V_3 = \{c_1, \dots, c_n\}$$
$$T_n = V_1 * V_2 * V_3 = \{\sigma \subset V : |\sigma \cap V_i| \le 1 \text{ for } 1 \le i \le 3\}$$



$$T_n \simeq S^2 \vee \dots \vee S^2 \qquad (n-1)^3 \;\; {\sf times}$$

Latin Square Complexes

$$L = (\pi_1, \dots, \pi_n) \in \mathcal{L}_n$$
 defines a complex $Y(L) \subset T_n$ by

$$Y(L)(2) = \{ [a_i, b_j, c_{\pi_i(j)}] : 1 \le i, j \le n \}.$$

Example:
$$n = 2$$

$$L = \begin{array}{|c|c|c|} \hline 1 & 2 \\ \hline 2 & 1 \\ \hline \end{array}$$

$$Y(L) = a_2$$

$$Y\left(\begin{array}{c|c}1&2\\\hline2&1\end{array}\right)\cup Y\left(\begin{array}{c|c}2&1\\\hline1&2\end{array}\right)=T_1$$

Random Latin Squares Complexes

Multiple Latin Squares

For
$$\underline{L}^d = (L_1, \dots, L_d) \in \mathcal{L}_n^d$$
 let $Y(\underline{L}^d) = \bigcup_{i=1}^d Y(L_i)$.

The Probability Space $\mathcal{Y}(n,d)$

 $\mathcal{L}_n^d = d$ -tuples of Latin squares of order n with uniform measure.

$$\mathcal{Y}(n,d) = \{Y(\underline{L}^d) : \underline{L}^d \in \mathcal{L}_n^d\}$$
 with induced measure from \mathcal{L}_n^d .

Theorem [Lubotzky-M]:

There exist $\epsilon > 0, d < \infty$ such that

$$\lim_{n\to\infty}\Pr\left[Y\in\mathcal{Y}(n,d):h_1(Y)>\epsilon\right]=1.$$

Remark: $\epsilon = 10^{-11}$ and $d = 10^{11}$ will do.

Idea of Proof

Fix
$$0 < c < 1$$
 and let $\phi \in C^1(T_n; \mathbb{F}_2)$.

$$\phi$$
 is
$$\begin{cases} c - \text{small} & \text{if } \|[\phi]\| \le cn^2 \\ c - \text{large} & \text{if } \|[\phi]\| \ge cn^2 \end{cases}$$

c-Small Cochains

Lower bound on expansion in terms of the spectral gap of the vertex links.

c-Large Cochains

Expansion is obtained by means of a new large deviations bound for the probability space \mathcal{L}_n of Latin squares.

2-Expansion and Spectral Gap

Notation

For a complex $T_n^{(1)} \subset Y \subset T_n$ let:

$$Y_{\mathbf{v}} = \operatorname{lk}(Y, \mathbf{v}) = \operatorname{the link of } \mathbf{v} \in V.$$

$$\lambda_{v} = \text{spectral gap of the } n \times n \text{ bipartite graph } Y_{v}.$$

$$\tilde{\lambda} = \min_{v \in V} \lambda_v$$
.

$$d = D_1(Y) = \text{maximum edge degree in } Y.$$

Theorem [LM]:

If $\|[\phi]\| \leq cn^2$ then

$$\|d_1\phi\| \geq \left(\frac{(1-c^{1/3})\tilde{\lambda}}{2} - \frac{d}{3}\right)\|[\phi]\|.$$

Large Deviations for Latin Squares

The Random Variable $f_{\mathcal{E}}$

 \mathcal{E} - a family of 2-simplices of T_n , $|\mathcal{E}| \geq cn^3$.

For a Latin square $L \in \mathcal{L}_n$ let

$$f_{\mathcal{E}}(L) = |Y(L) \cap \mathcal{E}|.$$

Then

$$E[f_{\mathcal{E}}] = \frac{|\mathcal{E}|}{n} \ge cn^2.$$

Theorem [LM]:

For all $n \geq n_0(c)$

$$\Pr[L \in \mathcal{L}_n : f_{\mathcal{E}}(L) < 10^{-3}c^2n^2] < e^{-10^{-3}c^2n^2}.$$

Higher Laplacians

A positive weight function $c(\sigma)$ on the simplices of X induces an Inner product on $C^k(X) = C^k(X; \mathbb{R})$:

$$(\phi, \psi) = \sum_{\sigma \in X(k)} c(\sigma)\phi(\sigma)\psi(\sigma)$$
.

Adjoint $d_k^*: C^{k+1}(X) \to C^k(X)$

$$(d_k\phi,\psi)=(\phi,d_k^*\psi).$$

$$C^{k-1}(X) \stackrel{d_{k-1}}{\underset{d_{k-1}^*}{\longleftarrow}} C^k(X) \stackrel{d_k}{\underset{d_k^*}{\longleftarrow}} C^{k+1}(X)$$

The reduced k-Laplacian of X is the positive semidefinite operator

$$\Delta_k = d_{k-1}d_{k-1}^* + d_k^*d_k : C^k(X) \to C^k(X)$$
.

Matrix Representation of Δ_k

For the constant weight function $c\equiv 1$, the matrix form of the Laplacian is

$$\Delta_k(\sigma, \tau) = \left\{ egin{array}{ll} \deg(\sigma) + k + 1 & \sigma = \tau \ (\sigma : \sigma \cap au) \cdot (au : \sigma \cap au) & |\sigma \cap au| = k \;,\; \sigma \cup au
otin X \end{array}
ight.$$

Relation with the Graph Laplacian

Let G = 1-skeleton of X

$$\Delta_0 = L_G + J$$

$$\mu_0(X) = \lambda_2(G)$$

Harmonic Cochains

The space of Harmonic k-cochains

$$\ker \Delta_k = \{ \phi \in C^k(X) : d_k \phi = 0 , \ d_{k-1}^* \phi = 0 \}.$$

Simplicial Hodge Theorem:

$$C^k(X) = \operatorname{Im} d_{k-1} \oplus \ker \Delta_k \oplus \operatorname{Im} d_k^* \ .$$

 $\ker \Delta_k \cong \operatorname{\tilde{H}}^k(X;\mathbb{R}).$

 $\mu_k(X) = \text{minimal eigenvalue of } \Delta_k.$

A Vanishing Criterion:

$$\mu_k(X) > 0 \Leftrightarrow \tilde{\mathsf{H}}_k(X; \mathbb{R}) = 0.$$

Spectral Gap and Colorful Simplices

 $\Delta_{n-1}^{(k-1)} \subset X \subset \Delta_{n-1}^{(k)}$ with vertex coloring: $[n] = V_0 \cup \cdots \cup V_k$. Number of colorful k-simplices:

$$e(V_0,\ldots,V_k)=|\{\sigma\in X(k): |\sigma\cap V_i|=1\ \forall\, 0\leq i\leq k\}|.$$

Theorem [Parzanchevski-Rosenthal-Tessler]:

Let c be the constant weight function $c(\sigma) \equiv 1$. Then

$$e(V_0,\ldots,V_k)\geq \frac{\prod_{i=0}^k|V_i|}{n}\cdot\mu_{k-1}(X).$$

Sketch of Proof

Define $\psi \in C^k(\Delta_{n-1})$ by

$$\psi([v_0,\ldots,v_k]) = \begin{cases} sgn(\pi) & v_{\pi(i)} \in V_i \ \forall \ 0 \le i \le k \\ 0 & [v_0,\ldots,v_k] \text{ is not colorful.} \end{cases}$$

Let $\phi = d_{k-1}^* \psi \in C^{k-1}(\Delta_{n-1}) = C^{k-1}(X)$. Then:

$$(\Delta_{k-1}\phi,\phi)=(d_{k-1}\phi,d_{k-1}\phi)=n^2\cdot e(V_0,\ldots,V_k)$$

$$(\phi,\phi)=n\prod_{i=0}^k|V_i|.$$

Therefore, by the variational principle:

$$\mu_{k-1}(X) \leq \frac{(\Delta_{k-1}\phi,\phi)}{(\phi,\phi)} = \frac{n \cdot e(V_0,\ldots,V_k)}{\prod_{i=0}^k |V_i|}.$$

Eigenvalues and Cohomology

Let X be a pure d-dimensional complex with weight function:

$$c(\sigma) = (d - \dim \sigma)! |\{\tau \in X(d) : \tau \supset \sigma\}|.$$

For $\tau \in X$ consider the link $X_{\tau} = \operatorname{lk}(X, \tau)$ with a weight function given by $c_{\tau}(\alpha) = c(\tau \alpha)$.

Theorem [Garland '72]:

Let $0 \le \ell < k < d$. Then:

$$\min_{\tau \in X(\ell)} \mu_{k-\ell-1}(X_{\tau}) > \frac{\ell+1}{k+1} \quad \Rightarrow \quad H^k(X; \mathbb{R}) = 0.$$

In particular:

$$\min_{\tau \in X(d-2)} \mu_0(X_\tau) > \frac{d-1}{d} \quad \Rightarrow \quad H^{d-1}(X;\mathbb{R}) = 0.$$

Complexes with Expanding Links

The Projective Plane Graph

 $G_q = (V_q, E_q)$: points vs. lines graph of PG(2, q).

$$|V_q| = 2(q^2 + q + 1)$$
 , $|E_q| = (q + 1)(q^2 + q + 1)$.

Spectral Gap:
$$\mu_0(G_q) = 1 - \frac{\sqrt{q}}{q+1}$$
.

If $q \geq d^2$ then $\mu_0(G_q) > \frac{d-1}{d}$. This implies the following

Theorem [Garland]:

Let $q \geq d^2$ and let X be a pure d-dimensional complex such that $\text{lk}(X,\tau) \cong G_q$ for all $\tau \in X(d-2)$.

Then $H_{d-1}(X;\mathbb{R})=0$.

Cohomology of Discrete Subgroups

 \mathbb{K} a local field with residue field \mathbb{F}_q .

 Γ a torsion-free discrete cocompact subgroup of $SL_{d+1}(\mathbb{K})$.

Theorem [Garland]:

If $q \ge d^2$ then $H^i(\Gamma; \mathbb{R}) = 0$ for 0 < i < d.

Sketch of Proof:

 $\mathcal{B} = \tilde{A}_d(\mathbb{K})$ - the affine building associated to $SL_{d+1}(\mathbb{K})$.

 ${\cal B}$ is a contractible complex with a free Γ action.

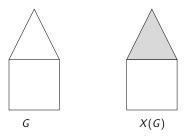
The quotient space $\mathrm{B}\Gamma=\mathcal{B}/\Gamma$ is a pure d-dimensional complex such that $\mathrm{lk}(\mathrm{B}\Gamma,\tau)\cong G_q$ for all $\tau\in\mathrm{B}\Gamma(d-2)$.

Therefore for all 0 < i < d

$$H^{i}(\Gamma;\mathbb{R})=H^{i}(\mathrm{B}\Gamma;\mathbb{R})=0.$$

Flag Complexes

The flag complex X(G) of a graph G = (V, E): Vertex set: V, Simplices: all cliques σ of G.



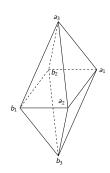
Remark:

The first subdivision of a complex is a flag complex.

Face Numbers of Flag Complexes

Octahedral *n*-Sphere

$$(S^0)^{*(k+1)} = \{a_1, b_1\} * \cdots * \{a_{k+1}, b_{k+1}\}$$



Proposition [M '03]:

If $\tilde{H}_k(X(G)) \neq 0$ then for all j:

$$f_j(X(G)) \ge f_j((S^0)^{*(k+1)}) = {k+1 \choose j+1} 2^{j+1}.$$

Homology of Flag Complexes of Random Graphs

Let $\epsilon > 0$ be fixed and let $G \in G(n, p)$.

Theorem [Kahle '12]:

$$p \le n^{-\frac{1}{k} - \epsilon} \implies H_k(X(G); \mathbb{Z}) = 0$$
 a.a.s.

$$p \geq \left(\frac{\left(\frac{k}{2} + 1 + \epsilon\right)\log n}{n}\right)^{\frac{1}{k+1}} \quad \Rightarrow \quad H_k(X(G); \mathbb{R}) = 0 \quad \text{a.a.s.}$$

Theorem [DeMarco-Hamm-Kahn '12]:

$$p \geq \left(\frac{\left(\frac{3}{2} + \epsilon\right) \log n}{n}\right)^{\frac{1}{2}} \quad \Rightarrow \quad H_1(X(G); \mathbb{F}_2) = 0 \quad \text{a.a.s.}$$

Eigenvalues of Flag Complexes

$$G = (V, E)$$
 graph, $|V| = n$, $X = X(G)$ with weights $c(\sigma) \equiv 1$. $\mu_k = \mu_k(X) =$ minimal eigenvalue of Δ_k on X .

Theorem [Aharoni-Berger-M]:

For k > 1

$$k\mu_k \ge (k+1)\mu_{k-1} - n.$$

In particular:

$$\mu_k \geq (k+1)\lambda_2 - kn$$
.

Corollary:

$$\lambda_2(G) > \frac{kn}{k+1} \Rightarrow \mu_k > 0 \Rightarrow \tilde{\operatorname{H}}^k(X(G)) = 0.$$

Example: Turán Graph

$$|V_1| = \cdots = |V_k| = \ell$$
, $n = k\ell$, $m = (\ell - 1)^k$.
 $T_k(n)$ - the complete k -partite graph on $V_1 \cup \cdots \cup V_k$.

Spectral gap

$$\lambda_2(T_k(n)) = \frac{(k-1)n}{k}.$$

Flag complex

$$X(T_k(n)) = V_1 * \cdots * V_k \simeq \bigvee_{i=1}^m S^{k-1}.$$

$$\dim \tilde{H}_{k-1}(X(T_k(n)); \mathbb{R}) = m \neq 0.$$

Eigenvalues and Connectivity of I(G)

The independence complex I(G)

Vertex set: V, Simplices: all independent sets σ of G.

Homological connectivity

$$\eta(Y) = 1 + \min\{i : \tilde{H}_i(Y) \neq 0\}.$$

Theorem [ABM]:

For a graph G on n vertices

$$\eta(\mathrm{I}(G)) \geq \frac{n}{\lambda_n(G)}.$$

Bipartite Matching

 A_1, \ldots, A_m finite sets. A System of Distinct Representatives (SDR): a choice of distinct $x_1 \in A_1, \ldots, x_m \in A_m$.

A_1	A_2	A_3
1	1	
		2
3	3	3
∃ SDR		

A_1	A_2	A_3
1	1	
2		2
∄ SDR		

Hall's Theorem (1935)

$$(A_1, \ldots, A_m)$$
 has an SDR iff $|\bigcup_{i \in I} A_i| \ge |I|$ for all $I \subset [m] = \{1, \ldots, m\}$.

Hypergraph Matching

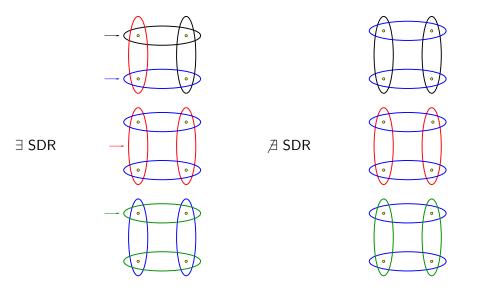
A Hypergraph is a family of sets $\mathcal{F} \subset 2^V$ $(\mathcal{F}_1, \ldots, \mathcal{F}_m)$ a sequence of m hypergraphs A System of Disjoint Representatives (SDR) for $(\mathcal{F}_1, \ldots, \mathcal{F}_m)$ is a choice of pairwise disjoint $F_1 \in \mathcal{F}_1, \ldots, F_m \in \mathcal{F}_m$

When do $(\mathcal{F}_1, \ldots, \mathcal{F}_m)$ have an SDR?

The problem is NP-Complete even if all \mathcal{F}_i 's consist of 2-element sets. Therefore, we cannot expect a "good" characterization as in Hall's Theorem.

There are however some interesting sufficient conditions ...

Do $(\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \mathcal{F}_4)$ have an SDR?



The Aharoni-Haxell Theorem

A Matching is a hypergraph $\mathcal M$ of pairwise disjoint sets. The Matching Number $\nu(\mathcal F)$ of a hypergraph $\mathcal F$ is the maximal size $|\mathcal M|$ of a matching $\mathcal M\subset\mathcal F$.

$$\nu(\mathcal{F})=3$$

$$u(\mathcal{F}) = 1$$

The Aharoni-Haxell Theorem

$$\mathcal{F}_1,\ldots,\mathcal{F}_m\subset {V\choose r}$$
 such that for all $\mathrm{I}\subset [m]$

$$\nu(\bigcup_{i\in I}\mathcal{F}_i)>r(|I|-1)$$
.

Then $(\mathcal{F}_1,\ldots,\mathcal{F}_m)$ has an SDR.

A Fractional Extension

A Fractional Matching of a hypergraph $\mathcal F$ on V is a function $f:\mathcal F\to\mathbb R_+$ such that $\sum_{F\ni v}f(F)\le 1$ for all $v\in V$. The Fractional Matching Number $\nu^*(\mathcal F)$ is $\max_f\sum_{F\in\mathcal F}f(F)$ over all fractional matchings f.

Example: The Finite Projective Plane
$$\mathcal{P}_n$$

 $\nu(\mathcal{P}_n) = 1$, $\nu^*(\mathcal{P}_n) = \frac{n^2 + n + 1}{n + 1}$

Theorem [Aharoni-Berger-M]:

$$\mathcal{F}_1,\ldots,\mathcal{F}_m\subset \binom{V}{r}$$
 such that for all $\mathrm{I}\subset[m]$

$$u^*(\bigcup_{i\in I}\mathcal{F}_i) > r(|I|-1)$$
.

Then $(\mathcal{F}_1,\ldots,\mathcal{F}_m)$ has an SDR.